• 其他栏目

    李芳

    • 讲师
    • 性别:女
    • 毕业院校:南京大学
    • 学历:博士研究生毕业
    • 学位:理学博士学位
    • 在职信息:在岗
    • 所在单位:数学与统计学院
    • 入职时间: 2016-07-15
    • 电子邮箱:

    访问量:

    最后更新时间:..

    个人简介:

    2016年6月毕业于南京大学,师从钟承奎教授,获理学博士学位;2014年,受国家留学基金委资助赴美国 Florida State  University  学习一年,师从 Prof. Wang xiaoming;2016年7月入职于西安电子科技大学数学与统计学院。目前主要从事非线性泛函分析与无穷维动力系统在相场及肿瘤模型中的应用等方面的研究,已在 Z. Angew. Math. Phys.、Commun. Math. Sci.、Discrete Contin. Dyn. Syst.-B、J. Math. Anal. Appl.等国际知名期刊发表论文二十余篇,现主持国家自然科学基金(青年)一项,完成陕西省自然科学基金(青年)一项和中央高校基本科研业务(自由探索类)项目两项

    发表的论文:

    [21] F. Li, B. You*, On the dimension of global attractor of the Cahn-Hilliard-Brinkman system with dynamic boundary conditions, Discrete and Continuous Dynamical Systems-B, Accepted.

    [20] F. Li, B. You*, Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping, Discrete and Continuous Dynamical  Systems-B. 25(1) (2020) 55-80. 

    [19] F. Li, B. You*, Optimal distributed control for a model of homogeneous incompressible two-phase flows, Journal of Dynamical and Control Systems.  27(2021) 153–177. 

    [18] B. You*, F. Li, Optimal distributed control of the Cahn-Hilliard-Brinkman system with regular potential. Nonlinear Analysis. 182 (2019) 226-247.

    [17] B. You*, F. Li, Global attractor of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics. Zeitschrift fur angewandte Mathematik und Physik. 69(5) (2018) 114. 

    [16] F. Li, B. You*, Random attractor for the stochastic Cahn–Hilliard–Navier–Stokes system with small additive noise. Stochastic Analysis and Applications. 36(3) (2018) 546-559. 

    [15]  F. Li, B. You*, Y. Xu, Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete and Continuous Dynamical Systems-B. 23(10) (2018) 4267-4284.

    [14] B. You, F. Li, C. Zhang, Finite dimensional global attractor of the Cahn-Hilliard-Navier-Stokes system with dynamic boundary conditions. Communications in Mathematical Sciences. 16(1) (2018) 53-76.

    [13] C. Zhang, F. Li, J.Q. Duan, Long-time behavior of a class of nonlocal partial differential equations,   Discrete and Continuous Dynamical Systems-B. 23(2)(2018) 749-763.

    [12] F. Li, B. You*, C. K. Zhong, Multiple equilibrium points in global attractors for some p-Laplacian equations. Applicable Analysis. 97(9) (2018) 1591-1599. 

    [11] B. You*, F. Li, Pullback attractors of the two-dimensional non-autonomous simplified Ericksen-Leslie system for nematic liquid crystal flows. Zeitschrift fur angewandte Mathematik und physik. 67(4) (2016) 1-20. 

    [10] B. You*, F. Li,Random attractor for the three-dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise.  Stochastic Analysis and Applications. 34(2) (2016) 278-292.  

    [9] B. You*, F. Li,Well-posedness and global attractor of the Cahn-Hilliard-Brinkman system with dynamic boundary conditions.  Dynamics of Partial Differential Equations. 13(1) (2016) 75-90.

    [8] F. Li*, C. K. Zhong, B. You, Finite-dimensional global attractor of the Cahn–Hilliard–Brinkman system.  Journal of Mathematical Analysis and Applications. 434 (2016) 599-616. 

    [7] B. You*, F. Li, The existence of a pullback attractor for the three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Nonlinear Analysis: Theory, Methods and Applications. 112 (2015) 118-128.

    [6] F. Li, B. You*, Pullback attractors for the non-autonomous complex Ginzburg-Landau type equation with p-Laplacian. Nonlinear Analysis: Modelling and Control. 20(2) (2015) 233-248.

    [5] F. Li, B. You*, Global attractors for the complex Ginzburg–Landau equation. Journal of Mathematical Analysis and Applications. 415 (2014) 14-24. 

    [4] B. You*, C. K. Zhong, F. Li, Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete and Continuous Dynamical Systems-B. 19(4) (2014) 1213-1226. 

    [3] B. You*, Y. R. Hou, F. Li, J. P. Jiang, Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with p-Laplacian. Discrete and Continuous Dynamical Systems-B. 19(6) (2014) 1801-1814.

    [2] B. You*, F. Li, Pullback attractor for the non-autonomous p-Laplacian equations with dynamic flux boundary conditions. Electronic Journal of Differential Equations. 2014(74) (2014) 1-11. 

    [1] B. You, F. Li*, C. K. Zhong, The existence of multiple equilibrium points in a global attractor for some p-Laplacian equation. Journal of Mathematical Analysis and Applications. 418 (2014) 626-637.

    科研项目:

    5、自由探索项目,主持人;

    4、国家自然科学基金青年项目,主持人;

    3、陕西省自然科学青年基金,主持人(已结题)

    2、中央高校基本科研业务费,主持人(已结题)

    1、中央高校基本科研业务费新教师创新基金,主持人(已结题);