李硕
最后更新时间:..
李硕,博士,西安电子科技大学人工智能学院全职博士后,合作导师为焦李成教授和刘芳教授,智能感知与图像理解教育部重点实验室(IPIU)成员,获得中国电子教育学会2024年度优秀博士学位论文提名奖,主要从事人工智能算法研究,包括计算机视觉,深度学习,多模态学习,空间智能等。研究工作主要发表于CVPR、AAAI、ECCV、TIP、 TCYB、TNNLS、TCSVT、TGRS和PR等领域内国际主流会议和期刊。
研究方向:
[1] 计算机视觉、深度学习、无监督学习、小样本学习、多模态学习、标签受限学习、视觉概念学习等;
[2] 图像分类、语义分割、视频异常检测、显著目标检测、行为识别、目标跟踪等;
[3] 空间智能:三维场景重建、理解、推理和规划等。
学生培养:
欢迎学有余力、想要接触科研或致力于保研的本科生参与到课题组的科研中来,要求如下:
1)认真踏实、积极主动、坚持不懈;
2)有浓厚的研究兴趣和学术追求;
3)最好有代码基础,掌握Python,了解Pytorch。若是大一和大二学生,没有代码基础也OK,可培养。
目前课题组有教授、副教授、博士后、博士研究生和硕士研究生共40余人以及10余名本科生。本课题组致力于人工智能科学研究和论文产出,可提供前沿的研究方向、新颖的研究思路、充足的服务器资源和经费、浓厚的科研氛围和完善的指导模式。只要符合上面的要求,可确保一年半载之后在代码能力和科研素养上有质的飞跃。欢迎有志在本科阶段做科研发论文的同学通过邮箱(lishuo@xidian.edu.cn)进行联系和咨询。
主持项目:
[1] 国家自然科学基金委员会:青年科学基金项目,2025年01月至2027年12月,在研;
[2] 陕西省人力资源和社会保障厅:陕西省博士后科研项目资助三等资助,2024年12月,在研;
[3] 财政部和教育部:中央高校基本科研业务费,2024年01月至2024年12月,在研;
[4] 中国博士后科学基金会:国家资助博士后研究人员计划C档,2023年12月,在研;
[5] 中国博士后科学基金会:博士后科学基金第74批面上资助,2023年12月,在研。
学术成果(*为通讯作者):
[1] Shuo Li, Fang Liu*, Zehua Hao, Xinyi Wang, Lingling Li, Xu Liu, Puhua Chen, Wenping Ma. Logits DeConfusion with CLIP for Few-Shot Learning[C]. Conference on Computer Vision and Pattern Recognition, 2025. [NEW]
[2] Shuo Li, Fang Liu*, Licheng Jiao, Lingling Li, Puhua Chen, Xu Liu, Wenping Ma. Prompt-Based Concept Learning for Few-Shot Class-Incremental Learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, doi: 10.1109/TCSVT.2025.3525545, 2025. [NEW]
[3] Shuo Li, Fang Liu*, Licheng Jiao, Xu Liu, Puhua Chen, Lingling Li. Mask-Guided Correlation Learning for Few-Shot Segmentation in Remote Sensing Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2024.3417965, 2024.
[4] Shuo Li, Fang Liu*, Licheng Jiao, Puhua Chen, Lingling Li. Self-supervised self-organizing clustering network: A novel unsupervised representation learning method[J]. IEEE Transactions on Neural Networks and Learning Systems, vol.35, no.2, pp. 1857-1871, Feb. 2024.
[5] Shuo Li, Fang Liu*, Zehua Hao, Licheng Jiao, Xu Liu, Yuwei Guo. MinEnt: Minimum entropy for self-supervised representation learning[J]. Pattern Recognition, vol.138, 109364, 2023.
[6] Shuo Li, Fang Liu*, Licheng Jiao, Xu Liu, Puhua Chen. Learning Salient Feature for Salient Object Detection Without Labels[J]. IEEE Transactions on Cybernetics, vol.53, no.2, pp. 1012-1025, 2023.
[7] Shuo Li, Fang Liu*, Zehua Hao, Kaibo Zhao, Licheng Jiao. Unsupervised Few-Shot Image Classification by Learning Features into Clustering Space[C]. European Conference on Computer Vision, vol. 13691, pp. 420-436, 2022.
[8] Shuo Li, Fang Liu*, Licheng Jiao, Puhua Chen, Xu Liu, Liling Li. MFNet: A Novel GNN-Based Multi-Level Feature Network With Superpixel Priors[J]. IEEE Transactions on Image Processing, vol. 31, pp. 7306-7321, 2022.
[9] Shuo Li, Fang Liu*, Licheng Jiao. Self-Training Multi-Sequence Learning with Transformer for Weakly Supervised Video Anomaly Detection[C]. AAAI Conference on Artificial Intelligence, vol. 36(2), pp. 1395-1403, 2022.
合作学术成果(*为通讯作者):
[1] Yang Liu, Fang Liu*, Licheng Jiao, Qianyue Bao, Shuo Li, Lingling Li, Xu Liu. Knowledge-Driven Compositional action recognition[J]. Pattern Recognition, doi:10.1016/j.patcog.2025.111452, 2025. [NEW]
[2] Pengfang Li, Fang Liu*, Licheng Jiao, Shuo Li, Xu Liu, Puhua Chen, Lingling Li, Zehua Hao. LLM Knowledge-Driven Target Prototype Learning for Few-Shot Segmentation[J]. Knowledge-Based Systems, doi:10.1016/j.knosys.2025.113149, 2025. [NEW]
[3] Zehua Hao, Fang Liu*, Licheng Jiao, Yaoyang Du, Shuo Li, Hao Wang, Pengfang Li, Xu Liu, Puhua Chen. Preserving text space integrity for robust compositional zero-shot learning via mixture of pretrained experts[J]. Neurocomputing, doi: 10.1016/j.neucom.2024.128773, 2025. [NEW]
[4] Yaoyang Du, Fang Liu*, Licheng Jiao, Shuo Li, Zehua Hao, Pengfang Li, Jiahao Wang, Hao Wang, Xu Liu. Text generation and multi-modal knowledge transfer for few-shot object detection[J]. Pattern Recognition, doi: 10.1016/j.patcog.2024.111283, 2024.
[5] Jiahao Wang, Fang Liu*, Licheng Jiao, Yingjia Gao, Hao Wang, Shuo Li, Lingling Li, Puhua Chen, Xu Liu. Visual and Language Collaborative Learning for RGBT Object Tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, doi: 10.1109/TCSVT.2024.3436878, 2024.
[6] Jiahao Wang, Fang Liu*, Licheng Jiao, Hao Wang, Shuo Li, Lingling Li, Puhua Chen, Xu Liu. Multi-modal visual tracking based on textual generation[J]. Information Fusion, doi: 10.1016/j.inffus.2024.102531, 2024.
[7] Yang Liu, Fang Liu*, Licheng Jiao, Qianyue Bao, Long Sun, Shuo Li, Lingling Li, Xu Liu. Multi-grained Gradual Inference Model for Multimedia Event Extraction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024.
[8] Hao Wang, Fang Liu*, Licheng Jiao, Jiahao Wang, Zehua Hao, Shuo Li, Lingling Li, Puhua Chen, Xu Liu. ViLT-CLIP: Video and Language Tuning CLIP with Multimodal Prompt Learning and Scenario-guided Optimization [C]. AAAI Conference on Artificial Intelligence, 2024.
[9] Jiahao Wang, Fang Liu*, Licheng Jiao, Yingjia Gao, Hao Wang, Lingling Li, Puhua Chen, Xu Liu, Shuo Li. Satellite Video Object Tracking based on Location Prompts[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024.
[10] Yunpeng Li, Xiangrong Zhang, Tianyang Zhang*, Guanchun Wang, Xinlin Wang, Shuo Li. A Patch-Level Region-Aware Module with a Multi-Label Framework for Remote Sensing Image Captioning[J]. Remote Sensing, 2024.
[11] Nan Jia, Xiaolin Tian*, Ting Yang, Shuo Li, Licheng Jiao. Self-restrained contrastive enhanced network for graph structure learning[J]. Expert Systems with Applications, 2024.
[12] Pengfang Li, Fang Liu*, Licheng Jiao, Shuo Li, Lingling Li, Xu Liu, Xinyan Huang. Knowledge Transduction for Cross-Domain Few-Shot Learning[J]. Pattern Recognition, 2023.
[13] Xiaoxue Qian, Fang Liu*, Licheng Jiao, Xiangrong Zhang, Xinyan Huang, Shuo Li, Puhua Chen and Xu Liu. Knowledge transfer evolutionary search for lightweight neural architecture with dynamic inference[J]. Pattern Recognition, vol.143, 109790, 2023.
[14] Pengfang Li, Fang Liu*, Licheng Jiao, Lingling Li, Puhua Chen, Shuo Li. Task context transformer and GCN for few-shot learning of cross-domain[J]. Neurocomputing, vol.548, 2023.
[15] Yaoyang Du, Fang Liu*, Licheng Jiao, Zehua Hao, Shuo Li, Xu Liu, Jing Liu. Augmentative contrastive learning for one-shot object detection[J]. Neurocomputing, 513: 13-24, 2022.
荣誉奖励:
[1] 中国电子教育学会2024年度优秀博士学位论文提名奖,2024年;
[2] 陕西省优秀毕业生(博士),2023年;
[3] 教育部博士研究生国家奖学金,2022年;
[4] 武汉大学优秀本科毕业生,2016年。
主讲课程:
[1] 离散数学,大一,2024年秋。
公共服务:
受邀担任ICML、CVPR、ICCV、ACM MM、NeurIPS、AAAI、ECCV、TNNLS、PR、TSP等会议和期刊的审稿人。