吴事良
最后更新时间:..
吴事良,男,博导,教授,1981年9月生. 2003年6月本科毕业于兰州大学数学系基地班, 2006年6月毕业于兰州大学获应用数学专业理学硕士学位,2009年12月毕业于西安电子科技大学获应用数学专业理学博士学位。 2013至2014年于美国迈阿密大学数学系公派访问。 2014年破格晋升为教授。现为美国数学会《Mathematical Review》与德国数学文摘《Zentralblatt MATH》的评论员、中国数学会第十三届理事会理事,陕西省数学会常务理事。
主持国家自然科学基金3项与陕西省自然科学基金两项;获陕西省优秀博士学位论文奖、第十一届陕西青年科技奖以及陕西省科学技术奖一等奖两项(排名第二和第六);入选2017年陕西省高等学校杰出青年人才计划以及首批西安电子科技大学华山学者菁英人才计划。2020年获陕西省杰出青年基金资助。
以第一作者或通讯作者在《Trans. Amer. Math. Soc.》、《J. Differential equations》、《Proc. Amer. Math. Soc.》、《J. Dynam. Differential Equations》、《Nonlinearity》、《J. Nonlinear Sci.》、《Proc. Royal Soc. Edinburgh (A)》、《European J. Appl. Math》、《Discrete Cont. Dyn. Systems》等知名期刊上发表SCI检索论文40余篇;是多个SCI源期刊,如J.
Dynam. Differential Equations, Discrete Cont. Dyn. Systems Ser. B, Z.
angew. Math. Phys., Nonlinear Analysis: RWA, J. Math. Anal. Appl., Comput. Math. Appl., Appl. Math. Comput.等的审稿人。
--------------------------------------------------------------------------------------------------
研究方向:微分方程、动力系统及生物应用。
1. 有界域上周期反应扩散方程的阈值动力学
2. 无解域上周期环境下反应扩散方程的行波解与整体解
--------------------------------------------------------------------------------------------------
代表性研究论文:
[1]Shi-Liang Wu and Cheng-Hsiung Hsu, Existence of entire solutions for delayed monostable epidemic models, Transactions of the American Mathematical Society, 368 (2016), 6033--6062.
[2]Shi-Liang Wu, Guang-Sheng Chen and Cheng-Hsiung Hsu, Entire solutions originating from multiple fronts of an epidemic model with nonlocal dispersal and bistable nonlinearity, Journal of Differential Equations,265(2018), 5520–5574.
[3] Shi-Liang Wu, and Shi-Gui Ruan, Entire solutions for nonlocal dispersal equations with spatio-temporal delay: Monostable case, Journal of Differential Equations, 258 (2015) 2435–2470.
[4]Shi-Liang Wu, Cheng-Hsiung Hsu, and Yan-Yu Xiao, Global attractivity, spreading speeds and traveling waves of delayed nonlocal reaction-diffusion systems, Journal of Differential Equations, 258 (2015) 1058–1105.
[5]Shi-Liang Wu, Zhen-Xia Shi and Fei-Ying Yang, Entire solutions in periodic lattice dynamical systems, Journal of Differential Equations, 255 (2013) 3505–3535
[6]Shi-Liang Wu and Cheng-Hsiung Hsu, Spatial dynamics of multilayer cellular neural networks, Journal of Nonlinear Science, 28 (2018) 3–41.
[7]Shi-Liang Wu and Hai-Yan Wang, Front-like entire solutions for monostable reaction-diffusion systems, Journal of Dynamics and Differential Equations, 25 (2013), 505–533.
[8]Shi-Liang Wu and Cheng-Hsiung Hsu, Entire solutions with annihilating fronts to a nonlocal dispersal equation with bistable nonlinearity and spatio-temporal delay, Journal of Dynamics and Differential Equations, 29 (2017),409-430.
[9]Shi-Liang Wu and Cheng-Hsiung Hsu, Entire solutions of nonlinear cellular neural networks with distributed time delays, Nonlinearity, 25 (2012) 2785–2801.
[10]Shi-Liang Wu, Pei-Xuan Weng and Shi-Gui Ruan, Spatial dynamics of a lattice population model with two age classes and maturation delay, European Journal of Applied Mathematics,26 (2015), 61–91.
[11]Shi-Liang Wu, Yu-Juan Sun and San-Yang Liu, Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity, Discrete Cont. Dyn. Systems, Ser. A, 33 (2013) 921-946.
[12]Shi-Liang Wu and Cheng-Hsiung Hsu, Entire solutions with merging fronts to a bistable periodic lattice dynamical system, Discrete Cont. Dyn. Systems, Ser. A, 36(2016)2329-2346.
[13]Shi-Liang Wu, Tong-Chang Niu and Cheng-Hsiung Hsu, Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations, Discrete Cont. Dyn. Systems, Ser. A, 37(2017) 3467-3486.
[14]Shi-Liang Wu and Cheng-Hsiung Hsu, Propagation of monostable traveling fronts in discrete periodic media with delay, Discrete Cont. Dyn. Systems, Ser. A,38 (2018) 3025-3060.
[15]Shi-Liang Wu and Cheng-Hsiung Hsu, Entire solutions of non-quasi-monotone delayed reaction-diffusion equations with applications, Proc. Royal Soc. Edinburgh (A), 144, (2014), 1085-1112.
招收有志于数学研究的博士后、博士生和硕士生!欢迎同学们报送或报考,报考前请邮件联系:slwu@xidian.edu.cn
招生专业:应用数学
研究方向: 微分方程、动力系统及应用
本课题组每年招收硕士生2-3名,博士生1-2名,博士后1-2名
1.微分方程(ODE,FDE,PDE)
2. 应用动力系统