![]() |
Personal Information:
More >>Female Univ. Electronic Science and Technology of China With Certificate of Graduation for Doctorate Study Professor
Academic Titles:Professor
Profile:
Huizhen Jenny Qian received the B.E. degree, Master degree, and Ph.D. degree in electronic engineering from University of Electronic Science and Technology of China (UESTC) in 2008, 2011, and 2018, respectively. From 2011 to 2013, she was an Engineer with Monolithic Power Systems, where she was involved with the power electronics R&D projects. From 2013 to 2015, she was a Research Associate in Delft University of Technology, where her research focus is the wideband mixed-signal power amplifier and transmitter. She was Assistant Professor from 2018 to 2020, and Associate Professor from 2020 to 2023 in UESTC. She joined Xidian University as a Full Professor in 2023. Her research interests include digital-intensive radio frequency integrated circuits, microwave/mm-wave/THz integrated circuits, on-chip phased-array systems, reconfigurable passive circuits, etc. She has authored or co-authored more than 80 IEEE journal and conference papers, and holds 40 patents.
Dr. Qian was awarded by the National Excellent Young Scientists Fund of China, IEEE MTT-Society Graduate Fellowship Award, 4 best paper awards at IEEE conferences, and 2 IEEE IMS Student Design Competition Awards. She serves as Academic Committee of School of Integrated Circuits in Xidian University, MTT-Society Technical Committee of TC-14 on Microwave and Millimeter-Wave Integrated Circuits, TPC Member of peer conferences including IEEE IWS, ICTA, MWSCAS, etc. She is IEEE Senior Member, and Senior Member of Chinese Institute of Electronics.
Selected Publications:
Journal Paper
J1 H. Tang, H. Qian, et al, “A self-calibration SCPA with storage capacitor array supporting 64-/256-/1024-QAM,” IEEE J. Solid-State Circuits (JSSC), vol. 58, no. 5, pp. 1241–1255, May 2023.
J2 Z. Deng, C. Han, Y. Li, H. Qian, et al, “A 23–40 GHz phased-array receiver using 14-bit phase-gain manager and wideband noise-cancelling LNA,” IEEE J. Solid-State Circuits (JSSC), vol. 58, no. 3, pp. 647–661, Mar. 2023.
J3 B. Yang, H. Qian, et al, “Millimeter-wave quadrature mixed-mode transmitter with distributed parasitic canceling and LO leakage self-suppression,” IEEE J. Solid-State Circuits (JSSC), vol. 58, no. 3, pp. 691–704, Mar. 2023.
J4 B. Yang, H. Qian, et al, “A CMOS wideband watt-level 4096-QAM digital power amplifier using reconfigurable power combining transformer,” IEEE J. Solid-State Circuits (JSSC), vol. 58, no. 2, pp. 357–370, Feb. 2023.
J5 Z. Deng, H. Qian, et al, “A reflectionless receiver with absorptive IF amplifier and dual-path noise-cancelling LNA,” IEEE J. Solid-State Circuits (JSSC), vol. 57, no. 8, pp. 2309–2319, Aug. 2022.
J6 B. Yang, H. Qian, et al, “Quadrature switched/floated capacitor power amplifier with reconfigurable self-coupling canceling transformer for deep back-off efficiency enhancement,” IEEE J. Solid-State Circuits (JSSC), vol. 56, no. 12, pp. 3715–3727, Dec. 2021.
J7 Y. Shu, H. Qian, et al, “A low phase noise and high FoM distributed-swing-boosting multi-core oscillator using harmonic-impedance-expanding technique,” IEEE J. Solid-State Circuits (JSSC), vol. 56, no. 12, pp. 3728–3740, Dec. 2021.
J8 H. Qian, et al, “A 4-element digital modulated polar phased-array transmitter with phase modulation phase-shifting,” IEEE J. Solid-State Circuits (JSSC), vol. 56, no. 11, 3331–3347, Nov. 2021.
J9 Z. Deng, J. Zhou, H. Qian, et al, “A 22.9-38.2-GHz dual-path noise-canceling LNA with 2.65-4.62-dB NF in 28-nm CMOS,” IEEE J. Solid-State Circuits (JSSC), vol. 56, no. 11, pp. 3348–3359, Nov. 2021.
J10 Y. Shu, H. Qian, et al, “A 2-D mode-switching quad-core oscillator using E-M mixed-coupling resonance boosting,” IEEE J. Solid-State Circuits(JSSC), vol. 56, no. 6, pp. 1711–1721, Jun. 2021.
J11 H. Qian, et al, “A quadrature digital power amplifier with hybrid Doherty and impedance boosting for complex domain power back-off efficiency enhancement,” IEEE J. Solid-State Circuits(JSSC), vol. 56, no. 5, 1487–1501, May 2021.
J12 W. Chen, Z. Deng, Y. Shu, H. Qian, et al, “Low NF and high P1dB wideband quasi-circulator with unequal power split and reconfigurable inter-stage matching,” IEEE Trans. Microw. Theory Tech., vol. 69, no. 4, pp. 2241–2252, Apr. 2021.
J13 D. Tang, C. Han, Z. Deng, H. Qian, et al, “Substrate integrated defected ground structure for single- and dual-band bandpass filters with wide stopband and low radiation loss,” IEEE Trans. Microw. Theory Tech., vol. 69, no. 1, pp. 659–670, Jan. 2021.
J14 Y. Shu, H. Qian, et al, “A cascaded mode-switching sub-sampling PLL with quadrature dual-mode voltage waveform-shaping oscillator,” IEEE Trans. Circuits and Systems—I: Regular Papers, vol. 68, no. 6, pp. 2341–2353, Jun. 2021.
J15 J. Zhou, H. Qian, et al, “High-resolution wideband vector-sum digital phase shifter with on-chip phase linearity enhancement technology,” IEEE Trans. Circuits and Systems—I: Regular Papers, vol. 68, no. 6, pp. 2457–2469, Jun. 2021.
J16 T. Wang, H. Qian, et al, “1.2–2.8-GHz 32.4-dBm digital power amplifier with balance-compensated matching network,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 1, pp. 41–44, Jan. 2021.
J17 H. Qian, et al, “A 20−32GHz quadrature digital transmitter using synthesized impedance variation compensation,” IEEE J. Solid-State Circuits(JSSC), vol. 55, no. 5, pp.1297–1309, May 2020.
J18 X. Luo, H. Qian, et al, “Empowering multi-function: digital power amplifier, the last RF frontier of the analog and the digital kingdoms,” IEEE Microw. Magazine, vol. 21, no. 12, pp. 47–67, Dec. 2020. (Invited paper)
J19 Z. Deng, H. Qian, et al, “Tunable quasi-circulator based on a compact fully-reconfigurable 180° hybrid for full-duplex transceivers,” IEEE Trans. Circuits and Systems—I: Regular Papers, vol. 66, no. 8, pp. 2949–2962, Aug. 2019.
J20 H. Qian, et al, “High resolution wideband phase shifter with current limited vector-sum”, IEEE Trans. Circuits and Systems—I: Regular Papers, vol. 66, no. 2, pp. 820–833, Feb. 2019.
J21 Y. Shu, H. Qian, et al, “A 169.6 GHz low phase noise and wideband hybrid mode-switching push-push oscillator,” IEEE Trans. Microw. Theory Tech., vol. 67, no. 7, pp. 2769–2781, Jul. 2019.
J22 H. Qian, et al, “Wideband digital power amplifiers with efficiency improvement using 40-nm LP CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 3, pp. 675–687, Mar. 2016.
Conference Paper
C1 H. Qian, W. Qin, C. Qiu, and Y. Yang, “A 21-to-31GHz DPD-less quadrature RFDAC with invariant impedance and scalable LO leakage,” in IEEE ISSCC, San Franscisco, CA, USA, Feb. 2025.
C2 B. Yang, Z. Deng, H. Qian, et al, “71–89GHz 12Gb/s double-edge-triggered quadrature RFDAC with LO leakage suppression achieving 20.5dBm peak output power and 20.4% system efficiency,” in IEEE ISSCC, San Franscisco, CA, USA, Feb. 2023.
C3 Z. Deng, H. Qian, et al, “A 3.8-dB NF, 23-40GHz phased-array receiver with 14-bit phase & gain manager and calibration-free dual-mode 28-52dB image rejection ratio for 5G NR,” in IEEE Custom Integrated Circuits Conf. (CICC), Newport Beach, CA, USA, Apr. 2022. (CICC2022 Best Student Paper Award Finalist)
C4 J. Zhou, H. Qian, et al, “A phase-modulation phase-shifting phased-array transmitter with 10-bit fast-locking phase self-calibration and 0/2.5/6/12dB power back-offs efficiency enhancement,” in IEEE Custom Integrated Circuits Conf. (CICC), Newport Beach, CA, USA, Apr. 2022.
C5 B. Yang, H. Qian, et al, “22-30GHz quadrature hybrid SCPA with LO leakage self-suppression and distributed parasitic-cancelling sub-PA array for linearity and efficiency enhancement,” in IEEE Custom Integrated Circuits Conf. (CICC), Newport Beach, CA, USA, Apr. 2022.
C6 B. Yang, H. Qian, et al, “Watt-level triple-mode quadrature SFCPA with 56 peaks for ultra-deep PBO efficiency enhancement using IQ intrinsic interaction and adaptive phase compensation,” in IEEE Custom Integrated Circuits Conf. (CICC), Newport Beach, CA, USA, Apr. 2022.
C7 J. Zhou, H. Qian, et al, “A quadrature-rotation phased-array transmitter with 15-bit phase tuning and 0/3/6/9/12/15-dB PBOs efficiency enhancement,” in IEEE RFIC, Denver, CO, USA, Jun. 2022.
C8 W. Chen, Y. Shu, H. Qian,et al, “A 21.8–41.6GHz fast-locking sub-sampling PLL with dead zone automatic controller achieving 62.7-fs Jitter and –250.3dB FoM,” in IEEE RFIC, Denver, CO, USA, Jun. 2022. (RFIC2022 Best Student Paper Award Finalist)
C9 H. Tang, H. Qian, et al, “A polar Doherty SCPA with 4.4º AM-PM distortion using on-chip self-calibration supporting 64-/256-/1024-QAM,” in IEEE RFIC, Denver, CO, USA, Jun. 2022.
C10 C. Pi, H. Qian, et al, “A 140-500 GHz CMOS THz spectroscope with 1 MHz resolution based on multi-branch rotational symmetric sensing surface,” in IEEE MTT-S Int. Microwave Sym. Dig., Denver, CO, USA, Jun. 2022.
C11 Y. Rao, H. Qian, et al, “Miniaturized 28 GHz packaged bandpass filter with high selectivity and wide stopband using multi-layer PCB technology,” in IEEE MTT-S Int. Microwave Sym. Dig., Denver, CO, USA, Jun. 2022. (IMS2022 Best Student Paper Award Finalist, IMS Top50 Paper)
C12 Y. Shu, H. Qian, et al, “A 2.3-to-3.2GHz Class-G impedance-modulation power oscillator with 10dBm peak pout and 39%/37%/33%/30% efficiency at 0/3/6/9dB PBOs,” in IEEE RFIC, Atlanta, GA, USA, Jun. 2021.
C13 Z. Deng, H. Qian, et al, “A 3.6dB NF, 23–39GHz reflectionless RX with absorptive amplifier and dual-path noise cancelling LNA supporting 64-QAM/256-QAM/1024-QAM for 5G NR,” in IEEE Custom Integrated Circuits Conf. (CICC), Virtual, Apr. 2021.
C14 B. Yang, H. Qian, et al, “A watt-level quadrature switched/floated capacitor power amplifier with back-off efficiency enhancement in complex domain using reconfigurable self-canceling transformer,” in IEEE ISSCC, San Francisco, CA, Feb. 2021.
C15 Y. Shu, H. Qian, et al, “A 3.09-to-4.04GHz distributed-boosting and harmonic-impedance-expanding multi-core oscillator with -138.9dBc/Hz at 1MHz offset and 195.1dBc/Hz FoM,” in IEEE ISSCC, San Francisco, CA, Feb. 2021. (ISSCC2021 RF Session Highlight)
C16 Y. Shu, H. Qian, et al, “A 18.6-to-40.1GHz, 201.7dBc/Hz FoMT multi-core oscillator using E-M mixed-coupling resonance boosting,” in IEEE ISSCC, San Francisco, CA, Feb. 2020.
C17 H. Qian, et al, “A quadrature digital power amplifier with hybrid Doherty and impedance boosting for efficiency enhancement in complex domain,” in IEEE RFIC, Los Angeles, CA, USA, Jun. 2020.
C18 B. Yang, H. Qian, et al, “1.2–3.6 GHz 32.67 dBm 4096-QAM digital PA using reconfigurable power combining transformer for wireless communication,” in IEEE RFIC, Los Angeles, CA, USA, Jun. 2020.
C19 D. Tang, C. Han, Z. Deng, H. Qian, et al, “Compact bandpass filter with wide stopband and low radiation loss using substrate integrated defected ground structure,” in IEEE MTT-S Int. Microwave Sym. Dig., Los Angeles, CA, USA, Jun. 2020. (IMS2020 Best Student Paper Finalist)
C20 H. Qian, et al, “A 20-32GHz digital quadrature transmitter with notched matching and mode-switch topology for 5G wireless and backhaul system,” in IEEE RFIC, Boston, MA, USA, Jun. 2019.
C21 B. Yang, H. Qian, et al, “A 90-98 GHz 2×2 phased-array transmitter with high resolution phase control and digital gain compensation,” in IEEE MTT-S Int. Microwave Sym. Dig., Boston, MA, USA, Jun. 2019. (IMS2019 Best Student Paper Award Finalist)
C22 W. Chen, Y. Shu, Z. Deng, H. Qian, et al, “A wideband quasi-circulator with low NF and high P1dB using noise-canceling technique,” in IEEE MTT-S Int. Microwave Sym. Dig., Boston, MA, USA, Jun. 2019.
C23 J. Ren, H. Qian, et al, “A wideband filtering balun using CPW-to-slotline transitions,” in IEEE MTT-S Int. Microwave Sym. Dig., Philadelphia, PA, USA, Jun. 2018. (IMS2018 Best Student Paper Award Finalist)
C24 Y. Shu, H. Qian, et al, “A 169.6 GHz hybrid mode-switching push-push oscillator with 21.7% tuning range and 180.6dBc/Hz FoMT in 28nm CMOS technology,” in IEEE MTT-S Int. Microwave Sym. Dig., Philadelphia, PA, USA, Jun. 2018.
C25 Z. Deng, H. Qian, et al, “A compact quasi-circulator with high isolation using reconfigurable 180° hybrid,” in IEEE MTT-S Int. Microwave Sym. Dig., Philadelphia, PA, USA, Jun. 2018.
C26 Y. Shu, H. Qian, et al, “A 20.7-31.8GHz dual-mode voltage waveform-shaping oscillator with 195.8dBc/Hz FoMT in 28nm CMOS,” in IEEE RFIC, Philadelphia, PA, USA, Jun. 2018.
C27 H. Qian, et al, “A 3-7GHz 4-Element Digital Modulated Polar Phased-Array Transmitter with 0.35° Phase Resolution and 38.2% Peak System Efficiency”, in IEEE Custom Integrated Circuits Conference (CICC), Austin, Texas, USA, Apr. 2017.
Education Background
Work Experience
Research Focus
- Digital-Intensive RFIC,microwave/mm-wave/THz integrated circuits, on-chip phased-array systems, reconfigurable passive circuits, etc.