6TdVRVFiSnDKoLTAzFD4uBoCGzSGgJcbujH4VSSNiMwNTlTcv6UuR5rtz66v
高隆

个人信息Personal Information

讲师

性别:男

毕业院校:西安电子科技大学

学历:博士研究生毕业

学位:博士研究生毕业

在职信息:在岗

所在单位:通信工程学院

入职时间:2020-06-15

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

CBFF-Net: A New Framework for Efficient and Accurate Hyperspectral Object Tracking

点击次数:

论文名称:CBFF-Net: A New Framework for Efficient and Accurate Hyperspectral Object Tracking

发表刊物:IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

摘要:Visual object tracking is a fundamental task in computer vision and thrived in recent decades. With the development
of snapshot hyperspectral (HS) sensors, efforts have been made
to exploit tracking the object with HS videos to overcome the
inherent limitation of red–green–blue (RGB) images. Existing
HS tracking algorithms extract the deep features from image
data separately, which break the interaction information between
bands. Therefore, the discrimination ability of HS trackers is limited
and the efficiency of the existing HS algorithms is low. In this
article, a novel algorithm [cross-ban

第一作者:高隆

论文类型:期刊论文

是否译文: