白振国

个人信息:Personal Information

副教授 硕士生导师

性别:男

毕业院校:西安交通大学

学历:博士研究生毕业

学位:理学博士学位

在职信息:在职

所在单位:应用数学系

所属院系: 数学与统计学院

扫描关注

个人简介:Personal Profile

白振国,于2011年在西安交通大学获得博士学位,2016年至2017年在加拿大纽芬兰纪念大学做访问学者。研究方向为生物数学及其应用动力系统,已在SIAM J. Appl. Math.》、J. Math. Biol.》、《Math. Biosci.》、《J. Theoret. Biol.等杂志发表学术论文20余篇。


欢迎大家保送或考取我的研究生,报考前请邮件联系:

zgbai@xidian.edu.cn zhenguobai_q@163.com


近年来的研究兴趣

1.具有季节性疾病的建模与研究

2.基本再生数理论

3.周期反应扩散传染病模型的动力学

主持科研项目

1.国家自然科学基金面上项目,阶段结构的杀蚊策略对蚊媒疾病的影响,2020.01-2023.12.

2.陕西省自然科学基金面上项目,具有周期时滞的反应扩散传染病模型的建模与研究,2019.01-2020.12.

3.中央高校基本科研业务费项目,季节性和扩散对蚊媒传染病传播影响的建模分析与研究,2019.04-2021.04.

发表论文

[1] Zhenguo Bai, Yijun Lou, Xiao-Qiang Zhao, A delayed succession model with diffusion for the impact of diapause on population growth, SIAM Journal on Applied Mathematics, accepted. 

[2] Zhenguo Bai, Xiao-Qiang Zhao, Basic reproduction ratios for periodic and time-delayed compartmental models with impulses, Journal of Mathematical Biology, 80 (2020) 1095-1117.

[3] Yan Zhang, Sanyang Liu, Zhenguo Bai, A periodic malaria model with two delays, Physica A: Statistical Mechanics and its Applications, 541 (2020) 123327.

[4] Yan Zhang, Sanyang Liu, Zhenguo Bai, Global dynamics of a diffusive single species model with periodic delay, Mathematical Biosciences and Engineering, 16 (2019) 2293-2304.

[5] Zhenguo Bai, Rui Peng, Xiao-Qiang Zhao, A reaction-diffusion malaria model with seasonality and incubation period, Journal of Mathematical Biology, 77 (2018) 201-228.

[6] Junli Liu, Zhenguo Bai, Tailei Zhang, A periodic two-patch SIS model with time delay and  transport-related infection, Journal of Theoretical Biology, 437 (2018) 36-44.      

[7] Zhenguo Bai, Tingting Zhao, Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity, Discrete and Continuous Dynamical Systems Series B, 23 (2018) 4063-4085.

[8] Zhenguo Bai, A periodic reaction-diffusion system modelling man-environment-man epidemics, International Journal of Biomathematics, 10 (2017) 1750074.

[9] Zhenguo Bai, Threshold dynamics of a time-delayed SEIRS model with pulse vaccination, Mathematical Biosciences, 269 (2015) 178-185.

[10] Zhenguo Bai, Shi-Liang Wu, Traveling waves in a delayed SIR epidemic model with nonlinear incidence, Applied Mathematics and Computation, 263 (2015) 221-232.

[11] Zhenguo Bai, Dan Liu, Modeling seasonal measles transmission in China, Communications in Nonlinear Science and Numerical Simulation, 25 (2015) 19-26.

[12] Zhenguo Bai, Global dynamics of a SEIR model with information dependent vaccination and periodically varying transmission rate, Mathematical Methods in the Applied Sciences, 38 (2015) 2403-2410.

[13] Zhenguo Bai, Threshold dynamics of a periodic SIR model with delay in an infected compartment, Mathematical Biosciences and Engineering, 12 (2015) 555-564

[14] Zhenguo Bai, Shengli Zhang, Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay, Communications in Nonlinear Science and Numerical Simulation, 22 (2015) 1370-1381. 

[15] Zhenguo Bai, A periodic age-structured epidemic model with a wide class of incidence rates, Journal of Mathematical Analysis and Applications, 393 (2012) 367-376.

[16] Zhenguo Bai, Yicang Zhou, Dynamics of a viral infection model with delayed CTL response and immune circadian rhythm. Chaos, Solitons & Fractals, 45 (2012) 1133-1139.

[17] Zhenguo Bai, Yicang Zhou, Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate, Nonlinear Analysis: Real World Applications, 13 (2012) 1060-1068. 

[18] Zhenguo Bai, Yicang Zhou, Threshold dynamics of a bacillary dysentery model with seasonal fluctuation, Discrete and Continuous Dynamical Systems Series B, 15 (2011) 1-14.

[19] Zhenguo Bai, Yicang Zhou, Tailei Zhang, Existence of multiple periodic solutions for an SIR model with seasonality, Nonlinear Analysis: Theory, Methods & Applications,74 (2011) 3548-3555.

[20] Zhenguo Bai, Yicang Zhou, Existence of two periodic solutions for a non-autonomous SIR epidemic model, Applied Mathematical Modelling, 35 (2011) 382-391.

  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations